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North Carolina-Chapel Hill and committee chair for the American Chemistry Society, the National Institutes of Health, and 
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Chapter 30: �Dr. Alison Brown, Program Director for the National Institutes of Health’s National Heart, Blood, and Lung Institute   1091
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A Resource for Biochemistry Students and Instructors
The Protein Structure and Function Exploration (PSAFE) project* http://psafeonline.
net at the University of Virginia was created as a semester-long project for biochemistry 
students to explore structure−function relationships in macromolecules and to research 
and write about their findings. Students doing the PSAFE project use the molecular- 
document capability of the ICM Browser (from Molsoft LLC) to accomplish their goals. 
In this exercise, each student progresses through tutorials about the basics of biomolecular 
structure to individual in-depth analysis of a chosen macromolecule and how it achieves its 
function. The project culminates in each student creating an interactive graphical display 
and accompanying narrative describing the chosen macromolecule’s structure-function 
relationships, together with relevant references. These student creations are reviewed and 
edited before posting to an archival website (http://psafeonline.net). The PSAFE archive 
contains descriptions of well over 1300 different proteins and nucleic acids and is available 
to anyone with an interest in exploring structure-function relationships in macromolecules. 
This semester-long research and writing project has been added to the Biochemistry 7e, 
online course to provide students with the opportunity to explore the structure and func-
tion of an assigned protein. The project culminates in the composition of an interactive 
narrative describing the macromolecule’s structure and function.

*Magnotti, E., Moy, J., Sleppy, R., Carey, A., Firdyiwek, Y., Garrett, R. H., and Grisham, 
C., 2019. ‘‘Developing and Implementing a Free Online Protein Structure and Function 
Exploration Project to Teach Undergraduate Students Macromolecular Structure−Function 
Relationships.’’ Journal of Chemical Education 96:729–733.

PSAFE (Protein Structure and Function 
Exploration)
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Laboratory Techniques in Biochemistry
All of our knowledge of biochemistry is the outcome of experiments. For the most part, 
this text presents biochemical knowledge as established fact, but students should never lose 
sight of the obligatory connection between scientific knowledge and its validation by obser-
vation and analysis. The path of discovery by experimental research is often indirect, tortu-
ous, and confounding before the truth is realized. Laboratory techniques lie at the heart of 
scientific inquiry, and many techniques of biochemistry are presented within these pages to 
foster a deeper understanding of the biochemical principles and concepts that they reveal.

Recombinant DNA Techniques

Restriction endonuclease digestion of DNA Section 10.6d
Restriction mapping Section 10.6e–f
DNA sequencing Section 11.1
Nucleic acid hybridization Section 11.3
Chemical synthesis of nucleic acids Section 11.6
Cloning; recombinant DNA constructions Section 12.1
Construction of genomic DNA libraries Section 12.2
Combinatorial libraries of synthetic oligomers Section 12.2
Screening DNA libraries by colony hybridization Section 12.2b
PCR (polymerase chain reaction) Section 12.2d
mRNA isolation Section 12.2e
Construction of cDNA libraries Section 12.2e
Expressed sequence tags (ESTs) Section 12.2e
Southern blotting Section 12.2d
Gene chips (DNA microarrays) Section 12.2f
Protein expression from cDNA inserts Section 12.3
Screening protein expression libraries with antibodies Section 12.3a
Two-hybrid systems to identify protein-protein interactions Section 12.3c
Reporter gene constructs Section 12.3b
RT-qPCR (real-time quantitative PCR) Section 12.3a
In vitro mutagenesis Section 12.3d
ChIP-Seq (chromatin immunoprecipitation-DNA sequencing) Section 12.3c
RNAi Section 12.4
Genome editing with CRISPR-Cas9 Section 12.5d
Base editing with CRISPR-Cas9 Section 12.5e
Prime editing with CRISPR-Cas9 Section 12.5f
Gene silencing with CRISPR-Cas9 Section 12.5g
High-throughput screening Section 12.6
BioBricks Section 12.7a
CRISPR/Cas9 Section 12.5

Probing the Function of Biomolecules
Green fluorescent protein Section 4.4
Plotting enzyme kinetic data Section 13.3j
Enzyme inhibition Section 13.4
Isotopic tracers as molecular probes Section 17.4c
RNAi Section 12.4
NMR spectroscopy Section 17.4d
Transgenic animals Section 28.8
DNA footprinting Section 29.1

Techniques Relevant to Clinical Biochemistry
Human gene therapy Section 12.5
Metabolomic analysis Section 17.5

Fluxomics Section 17.5
Tumor diagnosis with positron emission tomography (PET) Section 18.7
Glucose monitoring devices Section 22.1
Fluoro-substituted analogs as therapeutic agents Section 26.8
“Knockout” mice Section 28.7

Isolation/Purification of  Macromolecules
Ion exchange chromatography Section 5.2
Protein purification protocols Section 5.2
Dialysis and ultrafiltration Section 5.2
Size exclusion chromatography Section 5.2
SDS-polyacrylamide gel electrophoresis Section 5.2
Isoelectric focusing Section 5.2
Two-dimensional gel electrophoresis Section 5.2
Hydrophobic interaction chromatography Section 5.2
High-performance liquid chromatography Section 5.2
Affinity chromatography Section 5.2
Ultracentrifugation Section 5.2
Fractionation of cell extracts by centrifugation Section 5.2
Proteomic analysis by multidimensional protein identification 
technology Section 5.8b

Analyzing the Physical and Chemical Properties  
of Biomolecules 
Titration of weak acids Section 2.2b
Preparation of buffers Section 2.3
Measurement of standard reduction potentials Section 3.6
Edman degradation Section 4.3
Nuclear magnetic resonance (NMR) Sections 4.5 and 6.4
Estimation of protein concentration Section 5.2
Amino acid analysis Section 4.6
Amino acid sequence determination Section 5.3
Mass spectrometry of proteins Section 5.3i
Solid-phase peptide synthesis Section 5.5
Cryo-Electron Microscopy Section 6.4
Membrane lipid phase transitions Section 9.4b
Nucleic acid hydrolysis Section 10.6
DNA sequencing Section 11.1
Single-molecule DNA sequencing Section 11.1e,f
Density gradient (isopycnic) centrifugation Section 11.3
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Biochemistry
Scientific understanding of the molecular nature of life is growing at an astounding rate. 
Significantly, society is the prime beneficiary of  this increased understanding. Cures 
for diseases, better public health, remedies for environmental pollution, and the devel-
opment of  cheaper and safer natural products are just a few practical benefits of  this 
knowledge. In addition, this expansion of  information fuels, in the words of  Thomas 
Jefferson, “the illimitable freedom of  the human mind.” Scientists can use the tools of 
biochemistry and molecular biology to explore all aspects of  an organism—from basic 
questions about its chemical composition, through inquiries into the complexities of  its 
metabolism, differentiation, and development, to analysis of  its evolution, and even its 
behavior. New procedures based on the results of  these explorations lie at the heart of 
the many modern medical miracles. Biochemistry is a science whose boundaries now 
encompass all aspects of  biology, from molecules to cells, to organisms, to ecology, and 
to all aspects of  health care. This seventh edition of Biochemistry embodies and reflects 
the expanse of this knowledge. We hope that this new edition will encourage students to 
ask questions of their own and to push the boundaries of their curiosity about science. 

Making Connections
As the explication of natural phenomena rests more and more on biochemistry, its inclu-
sion in undergraduate and graduate curricula in biology, chemistry, and the health sci-
ences becomes imperative. The challenge to authors and instructors is a formidable one: 
how to familiarize students with the essential features of  modern biochemistry in an 
introductory course or textbook. Fortunately, the increased scope of  knowledge allows 
scientists to make generalizations connecting the biochemical properties of  living sys-
tems with the character of their constituent molecules. As a consequence, these general-
izations, validated by numerous examples, emerge in time as principles of  biochemistry, 
principles that are useful in discerning and describing new relationships between diverse 
biomolecular functions and in predicting the mechanisms underlying newly discovered 
biomolecular processes. Nevertheless, it is increasingly apparent that students must 
develop skills in inquiry-based learning, so that beyond this first encounter with bio-
chemical principles and concepts students are equipped to explore science on their own. 
Much of the design of this new edition is meant to foster the development of such skills.

We are both biochemists, but one of us spent his career in a biology department, and 
the other in a chemistry department. Undoubtedly, we each view biochemistry through 
the lens of our respective disciplines. We believe, however, that our collaboration on this 
textbook represents a melding of  our perspectives that will provide new dimensions of 
appreciation and understanding for all students.

Preface

28451_fm_ptg01_i-xxxviii.indd   32 11/01/23   12:23 PM

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 Preface	 xxxiii

Our Audience
This biochemistry textbook is designed to communicate the fundamental principles  
upon which all life is based to students encountering biochemistry for the first time. We 
aim to bring an appreciation of  biochemistry to a broad audience that includes under-
graduates majoring in the life sciences, physical sciences, or premedical programs as well 
as medical students and graduate students in the various health sciences for whom bio-
chemistry is an important route to understanding human physiology. To make this sub-
ject matter more relevant and interesting to all readers, we emphasize, where appropriate, 
the biochemistry of humans.

Objectives and Building on Previous Editions
We carry forward the clarity of  purpose found in previous editions; namely, to 
illuminate for students the principles governing the structure, function, and interactions 
of  biological molecules. At the same time, this new edition has been revised to reflect 
tremendous developments in biochemistry. Significantly, emphasis is placed on the 
interrelationships of  ideas so that students can begin to appreciate the overarching 
questions of  biochemistry.

New Features
New Textbook Features

●● Think-Pair-Share Problems in every chapter encourage students to work collabora-
tively to further their understanding of biochemistry concepts.

●● Careers in Chemistry showcase various career paths that students can take after study-
ing biochemistry. By seeing a diverse, inclusive, and equitable chemical community, all 
students know that they have a future in chemistry-related careers.

●● Over 160 New and Revised Exercises were added to the book and online course to 
keep the content current.

●● Step-by-Step Solutions were added to examples to help students master the approach 
to complicated problems. 

●● Recent Developments in Biochemistry: A number of Deeper Look and Critical Develop-
ments in Biochemistry boxes were added to address the latest developments in biochem-
istry such as the human proteome, NMR and Cryo-EM, AlfaFold, and CRISPR-Cas9. 

New to the Online Course and Resources
●● MCAT Essays and Practice Problems accompanied by detailed answer explanations, 

written by members of  medical school admissions and advisors, have been added to 
the online course in OWLv2 to prepare students for the biochemistry section of  the 
MCAT exam. 

●● Hints and Targeted Feedback. Over fifty percent of  problems in OWLv2 now come 
with targeted feedback on common errors that students make. The targeted feed-
back explains why the student's answer is incorrect and guides them toward a correct 
solution.

●● Laddered Assessments. Conceptual mastery modules are combined with more tradi-
tional homework questions into one structured learning path, organized by topic at 
the chapter level.

●● Over 300 New Problems were added to the online course. 
●● PSAFE: Protein Structure and Function Exploration Project. Students research a protein 

and use protein-modeling software to practice biochemistry actively in this research 
and writing semester-long project.

●● Protein Structure and Function Exploration Library of Proteins and Nucleic Acids is an 
online resource (http://www.psafeonline.net/) of  over 1300 protein and nucleic acid 
animations and interactive views, sorted by proteins and chapters in this textbook. 
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New to this Edition
Chapter 3 A new Deeper Look box called “Why Nature Chose Phosphates.”

Chapter 4 A new Deeper Look box called “Why Nature Chose Selenium,” and a revised 
Critical Developments in Biochemistry box on the incorporation of  unnatural amino 
acids into proteins.

Chapter 5 A new exercise on determining amino-acid sequence from mass spectrometry 
data. Efforts to describe the human proteome are introduced in a new Deeper Look box: 
“The Human Proteome Project and the Human Protein Atlas.”

Chapter 6 A new Critical Developments in Biochemistry box on the X-ray crystallography 
of proteins and a revised Deeper Look feature on metamorphic proteins, which exist as 
an ensemble of structures of similar energies and stabilities. New Critical Developments 
in Biochemistry boxes on the Protein Data Bank (PDB) and “NMR and Cryo-EM —  
Revolutionary Methods that Probe Protein Structure and Dynamics” (including  
cryo-EM structure of  the 2P spike protein mutant related to development of  COVID-
19 vaccines). New coverage of AlphaFold, artificial intelligence software that accurately 
predicts the three-dimensional structures of  proteins based solely on their amino acid 
sequences.

Chapter 8 A new Human Biochemistry box on the development of  vaccines for 
COVID-19 that employ lipid nanoparticles and make RNA vaccines practical and 
effective.

Chapter 9 New coverage of  monotopic, bitopic, and polytopic membrane proteins and 
a section called “Dynamic Exchange of Lipids and Proteins with Membrane Domains.”

Chapter 10 An updated introduction to the many roles of  small RNAs in the regulation 
of gene expression: miRNAs and the long, noncoding RNAs (lincRNAs).

Chapter 11 Completion of the complete nucleotide sequence determination for the human 
genome in 2022. Focus on the rapidly growing science of bioinformatics: the study of the 
nature and organization of  biological information, including functional genomics and 
proteomics. New principles emerging about the higher order structural organization of 
chromosomes, chromosome territories, and chromosome dynamics. Synthetic chromo-
somes, DNA as a data storage medium.

Chapter 12 Genome engineering with CRISPR-Cas9, CRISPR-Cas9 in gene-editing and 
base-editing. A new section on human gene therapy, rewriting the human genome.

Chapter 14 A new Critical Developments in Biochemistry box on Nobel laureate Frances 
Arnold and her pioneering work on the directed evolution of enzymes.

Chapter 17 Metabolites at the center of  life, metabolomics as the driver of  all the  
other –omics.

Chapter 18 The newly-discovered protein kinase activity of protein kinase M2 (PK M2), 
its stimulation by SAICAR (an intermediate in the purine biosynthetic pathway), and its 
role in tumor proliferation.

Chapter 20 The new molecular structures of  the supercomplexes that carry out electron 
transport and oxidative phosphorylation, including the new structure of Complex I and 
insights regarding its mechanism of action.

Chapter 22 A new Human Biochemistry box called “Metformin — A Diabetes Drug 
with Multiple Actions,” and a Critical Developments in Biochemistry feature describing 
how the consumption of ATP promotes and supports the metabolism of cancer cells.

Chapter 25 Synthesis of  cysteine in humans by a reverse transsulfurylation pathway.  
A new Human Biochemistry box on amino acid metabolism and cancer.

Chapter 26 Figure describing the purinosome metabolon that synthesizes purines on a 
PRPP platform.
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Chapter 27 New molecular graphic of  mTORC1, the master integrator of  information 
about nutrient status and a global regulator of  biosynthesis. A new section on AMPK 
inhibition of  mTORC1 through reversible phosphorylation. A new section on SIRT1, 
mTORC1, AMPK, caloric restriction, and metabolic syndrome.

Chapter 28 New discussion and figure illustrating that DNA polymerases are immo-
bilized within replication factories. New figure showing the structural organization of 
eukaryotic DNA replicons.

Chapter 29 Updated discussion of eukaryotic gene regulatory sequences such as promot-
ers, enhancers, insulators, and silencers.

Chapter 30 Pyrrolysine as the twenty-second amino acid. New art illustrating the richly 
detailed events in eukaryotic translation initiation.

Chapter 31 New structures of  the SecY channel and the SecA ATPase, and cryo-EM 
structures of co-translational and post-translational states of the Sec61 translocon com-
plex. New cryo-EM structures of a cullin-RING-UBE2D ubiquitin ligation assembly.

Chapter 32 New cryo-EM structure of the neurotensin receptor-arrestin2 complex. New 
section on ion channels that respond to physical stimuli (including temperature, voltage, 
pH, redox status, and mechanical phenomena) rather than chemical signals.

Features
●● Clarity of Instruction This edition was re-organized for increased clarity and readability.  

Many of  the lengthier figure legends were shortened and more information was 
included directly within illustrations. These changes will help the more visual reader.

●● Visual Instruction The richness of  the Protein Data Bank (www.pdb.org) and avail-
ability of  molecular graphics software has been exploited to enliven this text. Over 
1100 images of  prominent proteins and nucleic acids involved with essential biologi-
cal functions illustrate and inform the subject matter and were prepared especially for 
this book.

●● Essential Questions Organization Each chapter in this book is framed around an 
Essential Question that invites students to become actively engaged in their learning 
and encourages curiosity and imagination about the subject matter. For example, the 
Essential Question of Chapter 3 asks, “What are the laws and principles of thermody-
namics that allow us to describe the flows and interchanges of heat, energy, and mat-
ter in biochemical systems?” The section heads then pose Key Questions that serve as 
organizing principles for a lecture such as, “What is the daily human requirement for 
ATP?” The subheadings are designed to be concept statements that respond to the 
section headings.

●● Foundational Biochemistry At the end of  each chapter, this feature provides a com-
prehensive list of  the principal facts and concepts that a student should understand 
after reading each chapter. Presented as short statements or descriptive phrases, the 
items in the Foundational Biochemistry list serve as guides to students of the knowl-
edge they have acquired from the chapter and as checklists the students can review in 
assessing their learning.

●● End-of-Chapter Problems More than 700 end-of-chapter problems are provided. 
They serve as meaningful exercises that help students develop problem-solving  
skills useful in achieving their learning goals. Some problems require students to 
employ calculations to find mathematical answers to relevant structural or functional 
questions. Other questions address conceptual problems whose answers require appli-
cation and integration of ideas and concepts introduced in the chapter.

●● Think-Pair-Share problems encourage students to work collaboratively to further their 
understanding.

●● Further Readings sections at the end of each chapter make it easy for students to find 
up-to-date additional information about each topic.
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●● Critical Developments in Biochemistry essays emphasize recent and historical advances 
in the field.

●● Human Biochemistry essays emphasize the central role of basic biochemistry in med-
icine and the health sciences. These essays often present clinically important issues 
such as diet, diabetes, and cardiovascular health.

●● A Deeper Look essays expand on the text, highlighting selected topics or experimental 
observations.

●● Laboratory Techniques The experimental nature of biochemistry is highlighted, and a 
list of laboratory techniques found in this book can be seen on page xxxi.

Instructor and Student Resources
Instructor and student resources are available online.
Instructor resources include:

●● Solution and Answer Guide
●● Test Bank
●● Transition Guide from the Sixth Edition to the Seventh Edition
●● Lecture Note PowerPoint slides
●● Image Library slides
●● Guide to Teaching Online
●● Educator’s Guide

Acknowledgments
We are indebted to the many experts in biochemistry and molecular biology who care-
fully reviewed this book at several stages for their outstanding and invaluable advice 
on how to construct an effective textbook.

Reviewers for the 7th edition

Bobby Burkes, Grambling State University

Natasha DeVore, Missouri State University

Todd Eckroat, Penn State Behrend

Michael Guy, Northern Kentucky University

Steven Herron, Utah Valley University

Amber Howerton, Nevada State College

Kyoung Nan Kim, University of Colorado, Denver

Steven LaiHing, Oakwood University

Timothy Reichart, Hampden-Sydney College

Stephen Spiro, University of Texas at Dallas

Brent Znosko, Saint Louis University

Lisa Zuraw, The Citadel

We also wish to gratefully acknowledge many other people who assisted and encour-
aged us in this endeavor. Roxanne Wang, our Product Manager for Upper-Level 
Chemistry, has brought enthusiasm and an unwavering emphasis on student learning  
as the fundamental purpose of  our collective enterprise. Meaghan Ford, the Senior  
Content Manager for this edition, has kept us focused on the matters at hand, the urgencies  

28451_fm_ptg01_i-xxxviii.indd   36 11/01/23   12:23 PM

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 Preface	 xxxvii

of the schedule, and limits of  scale in a textbook’s dimensions. She is truly a colleague 
in these endeavors, as is Mona Zeftel, our Learning Designer, whose focus on student 
learning and student perceptions provided crucial guiderails for us in keeping the educa-
tion of students uppermost as we created this new edition. We also applaud the unsung 
but absolutely indispensable contributions by Maria Lokshin, Ph.D., our Development 
Editor. Maria’s editorial grace was precise and immensely helpful. Her writing skills 
and scientific acumen made this textbook eminently more readable. The contribution 
of  new supplementary end-of-chapter problems by Koen Vercruysse of  East Tennessee 
State University is gratefully acknowledged and appreciated. This book’s design and 
layout is the creative result of  work by Chris Doughman. If  this book has visual 
appeal, it is due to Katy Gabel and John Rich, Project Managers at Lumina Datamatics  
and their colleagues. The beautiful illustrations that not only decorate this text but also 
explain its contents are a testament to a number of  important collaborators. Many 
colleagues provided original art and graphic images for this book, particularly Professor 
Jane Richardson of  Duke University. We acknowledge with pleasure the scientific and 
artistic contributions of  Michal Sabat of  the University of  Virginia. Michal was the 
creator of  most of  the PyMOL-based molecular graphics in this book. Much of  the 
visual appeal that you will find in these pages gives testimony to his fine craftsmanship 
and his unflagging dedication to our purpose. Tina Chai, B.S. (Chemistry) graduate of  
the University of  Virginia, his successor and our Molecular Graphics Design specialist, 
carried his work further. Elizabeth Magnotti, B.S. (Chemistry) graduate of  the University  
of  Virginia, and Ph.D., Emory University, pioneered the development of  the PSAFE 
project, a multi-faceted task requiring scientific knowledge and a sense of  its importance. 
Yitna Firdyiwek was instrumental in the creation of  the PSAFE archive site. Celeste 
Costa, a current University of  Virginia student, prepared content and tutorial videos 
for the current PSAFE course. We want to acknowledge P. Kelley, of  Philander Smith 
College who audited the content for accuracy, Michael Cascio, of  Duquesne University 
who is writing hints and targeted feedback for new questions for the online course, and 
Rochelle Williams, of  the ARC Network, who advised on inclusivity and diversity for this 
edition. We owe a special thank you to Rosemary Jurbala Grisham, much loved spouse of 
Charles and wonderfully tolerant friend of Reg. Also to be acknowledged with love and  
pride are Georgia Cobb Garrett, spouse of  Reg, and our children, Jeffrey, Randal, and 
Robert Garrett, David and Andrew Grisham, and Emily Grisham Cooke. 

We hope this seventh edition of our textbook has captured the growing sense of won-
der and imagination that researchers, teachers, and students share as they explore the 
ever-changing world of biochemistry.

“Imagination is more important than knowledge. For while knowledge defines all we cur-
rently know and understand, imagination points to all we might yet discover and create.”

—Albert Einstein

Reginald H. Garrett	 Charles M. Grisham

Charlottesville, VA 	 Ivy, VA
December 2022

28451_fm_ptg01_i-xxxviii.indd   37 11/01/23   12:23 PM

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



28451_fm_ptg01_i-xxxviii.indd   38 11/01/23   12:23 PM

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Molecules are lifeless. Yet, in appropriate complexity and number, molecules 
compose living things. These living systems are distinct from the inanimate 

world because they have certain extraordinary properties. They can grow, move, 
perform the incredible chemistry of metabolism, respond to stimuli from the 
environment, and, most significantly, replicate themselves with exceptional fidelity. 
The chemistry of the living cell resembles the chemistry of organic reactions. Indeed, 
cellular constituents, or biomolecules, must conform to the chemical and physical 
principles that govern all matter. Despite the spectacular diversity of life, the intricacy 
of biological structures, and the complexity of vital mechanisms, life functions are 
interpretable in chemical terms. Chemistry is the logic of biological phenomena. Living 
organisms are self-sustaining systems of chemical reactions.

1.1  	� What Are the Distinctive Properties 
of Living Systems?

The most obvious quality of living organisms is that they are complicated and highly 
organized (Figure 1.1). For example, organisms large enough to be seen with the naked 
eye are composed of many cells, typically of many types. In turn, these cells possess 
subcellular structures, called organelles, which are complex assemblies of very large 
polymeric molecules, called macromolecules. These macromolecules show an exquisite 

1

Key Questions

1.1	 What Are the Distinctive Properties 
of Living Systems?

1.2	 What Kinds of Molecules Are 
Biomolecules?

1.3	 What Is the Structural Organization 
of Complex Biomolecules?

1.4	 How Do the Properties of 
Biomolecules Reflect Their Fitness to 
the Living Condition?

1.5	 What Are the Organization and 
Structure of Cells?

1.6	 What Are Viruses?

“…everything that living things do can be 
understood in terms of  the jigglings and  
wigglings of  atoms.”

Richard P. Feynman. Lectures on Physics, 
Addison-Wesley, 1963

Essential Question
Molecules are lifeless. Yet the properties of living things derive from the properties of 
molecules. Despite the spectacular diversity of life, the elaborate structure of biological 
molecules, and the complexity of vital mechanisms, are life functions ultimately 
interpretable in chemical terms?

Part I   
Molecular 
Components  
of Cells
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	 A sperm fertilizing an egg.

The Facts of Life: Chemistry 
Is the Logic of Biological 
Phenomena
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2	 Chapter 1  The Facts of Life: Chemistry Is the Logic of Biological Phenomena

degree of organization in their intricate three-dimensional architecture, even though 
they are composed of simple sets of chemical building blocks, such as sugars and amino 
acids. Indeed, the complex three-dimensional structure of a macromolecule, known as 
its conformation, is a consequence of interactions between the monomeric units, 
according to their individual chemical properties.

Biological structures serve functional purposes. That is, biological structures play a 
role in the organism’s existence. From parts of organisms, such as limbs and organs, 
down to the chemical agents of metabolism, such as enzymes and metabolic intermedi-
ates, a biological purpose can be given for each component. In biology, it is always 
meaningful to seek the purpose of observed structures, organizations, or patterns; that 
is, to ask what functional role they serve within the organism. 

Living systems are actively engaged in energy transformations. Maintenance of the 
highly organized structure and activity of living systems depends on their ability to 
extract energy from the environment. The ultimate source of energy is the sun. Solar 
energy flows from photosynthetic organisms (organisms able to capture light energy by 
the process of photosynthesis) through food chains to herbivores and ultimately to car-
nivorous predators at the apex of the food pyramid. The biosphere is thus a system 
through which energy flows. Organisms capture some of this energy, be it from photo-
synthesis or the metabolism of food, by forming special energized biomolecules. ATP 
and NADPH are the two most prominent examples (Figure 1.2). (Commonly used 
abbreviations such as ATP and NADPH are defined on the inside back cover of this 
book.) ATP and NADPH are energized biomolecules because they represent chemically 
useful forms of stored energy. When these molecules react with other molecules in the 
cell, the energy released can be used to drive energetically unfavorable processes. That is, 
ATP, NADPH, and related compounds are the power sources that drive the energy-
requiring activities of the cell, including biosynthesis, movement, osmotic work against 
concentration gradients, and, in special instances, light emission (bioluminescence). The 
living state is characterized by the flow of energy through the organism. Only upon death 
does an organism reach equilibrium with its inanimate environment. At the expense of 
energy flow, the organism can maintain its intricate order and activity far removed from 
equilibrium with its surroundings, yet exist in a state of apparent constancy over time. 
This state of apparent constancy, or so-called steady state, is actually a very dynamic 
condition: Energy and material are consumed by the organism to maintain its stability 
and order. In contrast, inanimate matter, as exemplified by the universe in totality, is 
moving to a condition of increasing disorder or, in thermodynamic terms, maximum 
entropy.

Entropy A thermodynamic term used to designate that 
amount of energy in a system that is unavailable to do 
work.

Figure 1.1  ​(a) Gelada (Theropithecus gelada), a baboon native to the Ethiopian highlands.  
(b) Tropical orchid (Masdevallia norops), Ecuador.
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	 1.1  What Are the Distinctive Properties of Living Systems?	 3

Living systems have a remarkable capacity for self-replication. Generation after 
generation, organisms reproduce virtually identical copies of themselves. This self-
replication can proceed by a variety of mechanisms, ranging from simple division in 
bacteria to sexual reproduction in plants and animals; but in every case, it is characterized 
by an astounding degree of fidelity (Figure 1.3). Indeed, if  the accuracy of self-replication 
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Figure 1.2  ​ATP and NADPH, two biochemically important  
energy-rich compounds. 

Figure 1.3  ​Organisms resemble their parents. Orangutan with infant.
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4	 Chapter 1  The Facts of Life: Chemistry Is the Logic of Biological Phenomena

were significantly greater, the evolution of organisms would be hampered. This is so 
because evolution depends upon natural selection operating on individual organisms 
that vary slightly in their fitness for the environment. The fidelity of self-replication 
resides ultimately in the chemical nature of the genetic material. This substance is 
deoxyribonucleic acid, abbreviated as DNA. It consists of a pair of polymeric chains 
built using four different monomers known as deoxynucleotides. These four deoxynu-
cleotide building blocks are symbolized by the letters A, C, G, and T. Information is 
encoded in each polynucleotide strand in the form of the precise sequence of A, C, G, 
and T deoxynucleotides along its length, much as this sentence contains information as 
encoded in the letters of the words that compose it. The two deoxynucleotide chains are 
structurally complementary to one another (Figure 1.4) in that everywhere there is an A 
in one strand, the other has a T, and everywhere there is a C in one strand, there is a G 
in the other. DNA can generate two identical copies of itself  in a rigorously executed 
polymerization process whereby each chain is copied precisely, using the information 
provided by its complementary strand. This process ensures a faithful reproduction of 
the information written by the original polynucleotide strands. In contrast, the mole-
cules of the inanimate world lack this capacity to replicate. A crude mechanism of rep-
lication must have existed at life’s origin.

1.2	 What Kinds of Molecules Are Biomolecules?

The elemental composition of living matter differs markedly from the relative 
abundance of elements in the earth’s crust. Hydrogen (H), oxygen (O), carbon (C), 
and nitrogen (N) constitute more than 99% of the atoms in the human body, with 
most of the H and O occurring as water, H2O. Oxygen, silicon (Si), aluminum (Al), 
and iron (Fe) are the most abundant atoms in the earth’s crust, with hydrogen, car-
bon, and nitrogen being relatively rare (less than 0.2% each). Nitrogen as dinitrogen 
(N2) is the predominant gas in the atmosphere, and carbon dioxide (CO2) is present 
at a level of 0.04%, a small but critical amount. What property unites hydrogen, 
oxygen, carbon, and nitrogen and renders these atoms so suitable to the chemistry 
of life? It is their ability to form covalent bonds by electron-pair sharing. Further-
more, hydrogen, carbon, nitrogen, and oxygen are among the lightest elements of 

In biochemistry and molecular biology, structurally 
complementary means that two structures align and fit 
together like pieces of a puzzle.

Figure 1.4  The DNA double helix. Two complementary polynucleotide chains run in opposite direc-
tions and pair through hydrogen bonding between their nitrogenous bases, A with T and C with G. 
Note that everywhere there is an A in one strand, the other has a T; everywhere there is a C in one 
strand, there is a G in the other. These complementary nucleotide sequences give rise to structural 
complementarity. 
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Figure 1.5  ​Covalent bond formation by e2 ​pair 
sharing. The energy necessary to break a bond is given 
in kJ/mol. 

the periodic table capable of forming such bonds (Figure 1.5). Because the strength 
of covalent bonds is inversely proportional to the atomic weights of  the atoms 
involved, hydrogen, carbon, nitrogen, and oxygen form the strongest covalent 
bonds. Two other covalent bond-forming elements, phosphorus (as phosphate 
[2OPO3

22] derivatives) and sulfur, also play important roles in biomolecules.

1.2a  Biomolecules Are Carbon Compounds
All biomolecules contain carbon. The prevalence of carbon is due to its unparalleled 
versatility in forming stable covalent bonds through electron-pair sharing. Carbon 
can form up to four such bonds by sharing each of the four electrons in its outer shell 
with electrons contributed by other atoms. Atoms commonly found in covalent link-
age to carbon are carbon itself, hydrogen, oxygen, and nitrogen. Hydrogen can form 
one such bond by contributing its single electron to the formation of an electron pair. 
Oxygen, with two unpaired electrons in its outer shell, can participate in two covalent 
bonds, and nitrogen, which has three unshared electrons, can form three such cova-
lent bonds. Furthermore, carbon, nitrogen, and oxygen can share two electron pairs 
to form double bonds with one another within biomolecules, a property that enhances 
their chemical versatility. Carbon and nitrogen can even share three electron pairs to 
form triple bonds.

Two properties of carbon covalent bonds merit particular attention. One is the ability 
of carbon to form covalent bonds with itself. The other is the tetrahedral nature of the 
four covalent bonds when carbon atoms form only single bonds. Together these proper-
ties hold the potential for an incredible variety of linear, branched, and cyclic carbon 
compounds. This diversity is multiplied further by the possibilities for including nitro-
gen, oxygen, and hydrogen atoms in these compounds (Figure 1.6). We can therefore 
envision the ability of carbon to generate complex structures in three dimensions. These 
structures, by virtue of appropriately included nitrogen, oxygen, and hydrogen atoms, 
can display unique chemistries suitable to the living state. Thus, we may ask, is there any 
pattern or underlying organization that brings order to this astounding potentiality?

1.3	� What Is the Structural Organization of Complex 
Biomolecules?

Examination of the chemical composition of cells reveals a dazzling variety of 
organic compounds covering chemical dimensions such as length and mass 
(Table 1.1). When biomolecules are classified based on size and chemical properties, 
an organizational pattern emerges. The biomolecules are built according to a struc-
tural hierarchy: Simple molecules are the units for building complex structures.

The molecular constituents of living matter do not reflect randomly the infinite 
possibilities for combining carbon, hydrogen, oxygen, and nitrogen atoms. Instead, only 
a limited set of the many possibilities is found, and these collections share certain 
properties essential to the living state. The most prominent aspect of biomolecular 
organization is that simple molecules are the building blocks for polymers that contain 
thousands or even millions of atoms, structures so large that we refer to them as 
macromolecules. What properties do these biomolecules possess that make them so 
appropriate for the condition of life?

1.3a  �Metabolites Are Used to Form the Building Blocks  
of Macromolecules 

The major precursors for the formation of biomolecules are water, carbon dioxide, and 
three inorganic nitrogen compounds—ammonium (NH4

1), nitrate (NO3
2), and dini-

trogen (N2). Metabolic processes transform these inorganic precursors through ever 

Macro - prefix from the Greek “makros” meaning large 
or long.
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	 1.3  What Is the Structural Organization of Complex Biomolecules?	 7

Biomolecular Dimensions

The dimensions of mass* and length for biomolecules are given typically in daltons and nanometers,† respectively. One dalton (Da) is approximately 
equal to the mass of one hydrogen atom, 1.66 ​3 ​10224 g. One nanometer (nm) is 1029 m, or 10 Å (angstroms).

Mass

 
Biomolecule

Length  
(long dimension, nm) Daltons Picograms

Water 0.3 18  

Alanine 0.5 89

Glucose 0.7 180  

Phospholipid 3.5 750  

Ribonuclease (a small protein) 4 12,600  

Immunoglobulin G (IgG) 14 150,000  

Myosin (a large muscle protein) 160  470,000  

Ribosome (bacterial) 18 2,520,000  

Bacteriophage fX174 (a very small bacterial virus) 25 4,700,000  

Pyruvate dehydrogenase complex (a multienzyme complex) 60 7,000,000  

Tobacco mosaic virus (a plant virus) 300 40,000,000 6.68 ​3 ​1025

Mitochondrion (liver) 1500  1.5

Escherichia coli cell 2000  2

Chloroplast (spinach leaf) 8000  60

Liver cell 20,000  8000

*Molecular mass is expressed in units of daltons (Da) or kilodaltons (kDa) in this book; alternatively, the dimensionless term molecular weight, symbolized by Mr, and defined as the 
ratio of the mass of a molecule to 1 dalton of mass, is used.
†Prefixes used for powers of 10 are as follows:
106	 mega	 M	 1023	 milli	 m
103	 kilo	 k	 1026	 micro	 m
1021	 deci	 d	 1029	 nano	 n
1022	 centi	 c	 10212	 pico	 p
			   10215	 femto	 f

Table 1.1

more complex levels of biomolecular order (Figure 1.7). In the first step, precursors are 
converted to metabolites, simple organic compounds that are intermediates in cellular 
energy transformation and the biosynthesis of various sets of building blocks: amino 
acids, sugars, nucleotides, fatty acids, and glycerol. Through the covalent linkage of 
these building blocks, macromolecules are constructed: proteins, polysaccharides, 
polynucleotides (DNA and RNA), and lipids. (Strictly speaking, lipids contain 
relatively few building blocks and are therefore not really polymeric like other macro-
molecules; however, lipids are important contributors to higher levels of complexity.) 
Interactions among macromolecules lead to the next level of structural organization, 
supramolecular complexes. Here, various members of one or more of the classes of 
macromolecules come together to form specific assemblies that serve important sub-
cellular functions. Examples of these supramolecular assemblies are multifunctional 
enzyme complexes, ribosomes, chromosomes, and cytoskeletal elements. For example, 
a eukaryotic ribosome contains four different RNA molecules and at least 70 unique 
proteins. Ribosomes are the supramolecular complexes where proteins are synthe-
sized. These supramolecular assemblies are an interesting contrast to their compo-
nents because their structural integrity is maintained by noncovalent forces, not 
covalent bonds. These noncovalent forces include hydrogen bonds, ionic attractions, 
van der Waals forces, and hydrophobic interactions between macromolecules. Such 
forces maintain these supramolecular assemblies in a highly ordered functional state. 
Although noncovalent forces are weak (less than 40 kJ/mol), they are numerous in 
these assemblies and thus can collectively maintain the essential architecture of the 
supramolecular complex under conditions of temperature, pH, and ionic strength that 
are consistent with cell life.
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8	 Chapter 1  The Facts of Life: Chemistry Is the Logic of Biological Phenomena

The inorganic precursors:
(18–64 daltons)
Carbon dioxide, Water, Ammonia,
Nitrogen(N2), Nitrate(NO3
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Carbon dioxide
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(50–250 daltons)
Glucose, Fructose-1,6-
bisphosphate,
Glyceraldehyde-3-phosphate,
3-Phosphoglyceric acid,
Pyruvate, Citrate, Succinate

Building blocks:
(100–350 daltons)
Amino acids, Nucleotides,
Monosaccharides, Fatty acids,
Glycerol

Macromolecules:
(103–109 daltons)
Proteins, Nucleic acids,
Polysaccharides, Lipids
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Nucleus, Mitochondria,
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Figure 1.7  ​Molecular organization in the cell is a hierarchy.

1.3b  Organelles Represent a Higher Order in Biomolecular Organization
The next higher rung in the hierarchical ladder is occupied by the organelles. 
Organelles are found only in eukaryotic cells, that is, the cells of higher organisms 
(eukaryotic cells are described in Section 1.5). Organelles are subcellular structures 
dedicated to a specific purpose. Several kinds, such as mitochondria and chloro-
plasts, evolved from bacteria that entered the cytoplasm of early eukaryotic cells. 
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Other organelles include the nucleus, endoplasmic reticulum, Golgi apparatus, and 
vacuoles as well as other relatively small cellular inclusions, such as peroxisomes, 
lysosomes, and chromoplasts. The nucleus is the repository of genetic information 
contained within the linear sequences of nucleotides in the DNA of chromosomes. 
Mitochondria capture the energy released during aerobic metabolism and use it to 
produce ATP. Chloroplasts endow cells with the ability to carry out photosynthesis, 
capturing light energy and transforming it into metabolically useful chemical forms.

1.3c  �Membranes Are Supramolecular Assemblies That Define  
the Boundaries of Cells

Membranes define the boundaries of cells and organelles. As such, they are not easily 
classified as supramolecular assemblies or organelles, although they share the proper-
ties of both. Membranes resemble supramolecular complexes in their construction 
because they are complexes of proteins and lipids maintained by noncovalent forces. 
Hydrophobic interactions are particularly important in maintaining membrane struc-
ture. Hydrophobic interactions arise because water molecules prefer to interact with 
each other rather than nonpolar substances. The presence of nonpolar molecules lessens 
the range of opportunities for water–water interaction by forcing water molecules into 
ordered arrays around the nonpolar groups. Such ordering can be minimized if the indi-
vidual nonpolar molecules redistribute from a dispersed state in the water into an aggre-
gated organic phase surrounded by water. The spontaneous assembly of membranes in 
the aqueous environment, where life arose and exists, is the natural result of the hydro-
phobic (“water-fearing”) character of lipids and proteins. Hydrophobic interactions are 
the creative means of membrane formation and the driving force that presumably estab-
lished the boundary of the first cell. The membranes of organelles, such as nuclei, mito-
chondria, and chloroplasts, differ from one another, with each having a characteristic 
protein and lipid composition tailored to the organelle’s function. The formation of these 
discrete compartments in the cell allows these cells to carry out unique functions.

1.3d  The Unit of Life Is the Cell
The cell is characterized as the unit of life, the smallest entity capable of displaying the 
attributes associated uniquely with the living state: growth, metabolism, stimulus 
response, and replication. In previous discussions, we explicitly narrowed the infinity 
of chemical complexity potentially available to organic life and we previewed an orga-
nizational arrangement, moving from simple to complex, that provides insights into the 
functional and structural plan of the cell. Nevertheless, these features do not explain 
the living characteristics of cells. Can we find other themes represented within biomol-
ecules that are explicitly chemical yet anticipate or illuminate the living condition?
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